ДАТЧИКИ ТЕНЗОРЕЗИСТОРНЫЕ ВЕСОИЗМЕРИТЕЛЬНЫЕ «S-ОБРАЗНОГО ТИПА» МОДЕЛЬ 4508

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ АЖЕ 5.178.045 РЭ

ВВЕДЕНИЕ

Настоящее Руководство по эксплуатации (далее – РЭ) датчиков тензорезисторных весоизмерительных «S-образного типа» модели 4508 (далее – датчики) предназначено для ознакомления с правилами эксплуатации и содержит сведения о технических данных, составе и принципе работы датчиков.

Датчики выпускаются по ГОСТ 8.631 и Техническим условиям ТУ 4273-020-16695547-2015.

Специальной подготовки обслуживающего персонала для эксплуатации датчиков не требуется, кроме знаний содержания настоящего РЭ.

Общий вид, габаритные и установочные размеры датчиков приведены в Приложении А.

Датчики сертифицированы Федеральным агентством по техническому регулированию и метрологии РФ (Свидетельство RU.C.28.314.А № 63737) и внесены в Государственный реестр средств измерений под № 65295-16.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение датчиков

Датчики предназначены для преобразования измеряемой нагрузки в аналоговый нормированный электрический сигнал и используются для измерения массы в составе весов, весоизмерительных и дозирующих устройств.

1.2 Метрологические и технические характеристики
$1.2.1$ Максимальная нагрузка (E_{max}), т
1.2.2 Минимальная статическая нагрузка (E _{min}), т
1.2.3 Класс точности по ГОСТ 8.631
1.2.4 Максимальное число поверочных интервалов, (n _{max})
1.2.5 Значение поверочного интервала (ν), кг
1.2.6 Минимальный поверочный интервал, v_{\min} , кг
1.2.7 Пределы допускаемой погрешности (тре), кг:
- от 0 до 500 <i>v</i> включительно±0,35 <i>v</i>
- свыше $500v$ до $2000v$ включительно±0,70 v
- свыше 2000 <i>v</i> ±1,05 <i>v</i>
$1.2.8$ Относительный выходной сигнал при E_{max} , мВ/В
1.2.9 Рабочий диапазон температур, °Сот минус 50 до плюс 50
1.2.10 Максимальная перегрузка, % от E _{max}
1.2.11 Напряжение питания, В
1.2.12 Входное сопротивление, Ом
1.2.13 Выходное сопротивление, Ом
1.2.14 Сопротивление изоляции не менее, МОм
1.2.15 Степень защиты по ГОСТ 14254
1.2.16 Обозначение по влажности
1.2.17 Доля от пределов допускаемой погрешности весов (p_{LS})
1.2.18 Средний срок службы
1.2.19 Габаритные размеры датчиков не более, мм:
- при E _{max} =0,1; 0,2; 0,5; 1,0; 2,0т
- при E _{max} =5,0т
- при E _{max} =10,0т175×80×140
1.2.20 Масса датчиков не более, кг:
- при E _{max} =0,1; 0,2; 0,5; 1,0; 2,0т
- при E _{max} =5,0т5,0
- при E _{max} =10,0т
1.2.21 Для подключения к вторичной аппаратуре датчики изготавливаются с разъемом

1.2.21 Для подключения к вторичной аппаратуре датчики изготавливаются с разъемом или кабельным вводом (датчики с E_{max} =5,0; 10,0т изготавливаются только с кабельным выводом).

1.3 Устройство и работа

- 1.3.1 Принцип действия датчика основан на изменении электрического сопротивления тензорезисторов, соединенных в мостовую схему, при их деформации, возникающей в местах наклейки тензорезисторов к упругому элементу датчика под действием прилагаемой силы. Изменение электрического сопротивления вызывает разбаланс мостовой схемы и появление в диагонали моста электрического сигнала, изменяющегося пропорционально нагрузке.
- 1.3.2 Основа конструкции датчиков это упругий элемент S-образного типа, форма которого позволяет оценивать силы растяжения или сжатия. В средней части элемента упругого выполнены два отверстия, в которых наклеены тензорезисторы. Тензорезисторы соединены между собой по мостовой схеме. В верхней и нижней стороне элемента упругого выполнены резьбовые отверстия для установки элементов силовведения, через которые осуществляется приложение нагрузки.

В боковой части датчика выполнена коробка для размещения регулировочных резисторов, на которой установлен выходной разъем или кабельный вывод, через который осуществляется соединение датчика со вторичной аппаратурой. С целью герметизации полость, где установлены тензорезисторы и коробка заполняются герметиком.

ДАТЧИКИ ТЕНЗОРЕЗИСТОРНЫЕ ВЕСОИЗМЕРИТЕЛЬНЫЕ «S-ОБРАЗНОГО ТИПА»

1.3.3 Прикладываемая нагрузка на датчики передается от элементов силовведения к упругому элементу, вызывая деформацию тензорезисторов, преобразующих ее в электрический аналоговый сигнал, пропорциональный измеряемому усилию.

Датчики настроены только на одно направление усилия: или на растяжение или на сжатие. При этом направление действия усилия, воспринимаемого датчиком, указано на корпусе датчика.

1.4 Маркировка

- 1.4.1 На маркировочной табличке датчика нанесены следующие обозначения:
- товарный знак изготовителя;
- знак утверждения типа;
- модель датчика;
- максимальная нагрузка;
- класс точности;
- относительный выходной сигнал;
- порядковый номер датчика по системе нумерации изготовителя;
- год выпуска;
- предельное значение напряжения питания.
- 1.4.2 Надписи, знаки и изображения на маркировочной табличке выполнены способом, обеспечивающим сохранность маркировки в период всего срока службы датчика.
 - 1.4.3 На транспортной таре нанесена маркировка, содержащая манипуляционные знаки:
 - «Хрупкое. Осторожно»;
 - «Bepx»;
 - «Беречь от влаги».

1.5 Упаковка

- 1.5.1 Упаковка датчика выполнена в соответствии с требованиями конструкторской документации и обеспечивает сохранность датчиков на весь период транспортирования и хранения.
 - 1.5.2 Вид отправки датчиков малотоннажный.

2 КОМПЛЕКТНОСТЬ

3 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

3.1 Подготовка датчиков к использованию

- 3.1.1 Вскрыть упаковочную тару. Ознакомиться с эксплуатационной документацией. Проверить комплектность согласно РЭ.
 - 3.1.2 Перед монтажом:
- произвести внешний осмотр датчиков и соединительного кабеля. Датчики не должны иметь механических повреждений;
 - проверить входное и выходное сопротивление;
 - проверить величину сопротивления изоляции.

3.2 Размещение датчиков

При размещении датчиков, которые работают на сжатие, необходимо произвести следующие операции:

- опорную поверхность, на которую будет устанавливаться датчики, очистить от краски, ржавчины или других дефектов;
- установить датчики на выбранном месте, притянув их опорные части к неподвижным основаниям болтами (с использованием пружинных шайб для предохранения от самопроизвольного ослабления); предельное угловое отклонение направления измеряемой силы относительно оси силоприемного отверстия не должна превышать 0.5° ;
- в качестве элементов силовведения рекомендуется использовать легированную стальную опору с твердостью $45 \div 50 \ HRC_3$;

ДАТЧИКИ ТЕНЗОРЕЗИСТОРНЫЕ ВЕСОИЗМЕРИТЕЛЬНЫЕ «S-ОБРАЗНОГО ТИПА»

- установить на датчики весовую конструкцию (платформу, бункер и тому подобное), исключив при этом резких ударов по датчикам; конструкцию необходимо устанавливать одновременно на все датчики сразу;
- металлические конструкции, на которых монтируются датчики, и конструкции, опирающиеся на них соединить между собой гибкой медной токоведущей перемычкой с сечением не менее 4мм² и заземлить так, чтобы при электросварочных и других работах, а также в процессе эксплуатации через датчики не проходил электрический ток;
 - подключить датчики согласно схеме приведенной в Приложение В;
- датчики, кабеля защитить от попадания грязи, воды, агрессивных веществ и от механических повреждений; кабеля рекомендуется прокладывать в стальных трубах.

В случае использования датчиков работающих на растяжение, рекомендуется использовать проушины.

Рекомендованные узлы встройки датчиков приведены в Приложении Б.

3.3 Порядок работы

- 3.3.1 Порядок работы датчиков соответствует порядку работы устройства, в котором они эксплуатируются.
- 3.3.2 Перед началом эксплуатации, после монтажа, датчики необходимо нагрузить до рабочей нагрузки, выдержать в течение 30 минут и разгрузить до величины тары (массы емкости, установленной на датчиках).
- 3.3.3 Для улучшения эксплуатационных характеристик датчиков рабочая нагрузка должна составлять 0,5÷0,8 от максимальной нагрузки датчика.

3.4 Меры безопасности

- 3.4.1 По способу защиты от поражения электрическим током датчики относятся к III классу по ГОСТ 12.2.007.0.
- 3.4.2 Датчики должны питаться от устройства, исключающего попадание в датчики напряжения более 12 В.
- 3.4.3 Электромонтажные работы в устройстве, куда входит датчик, производить при отключенном датчике.
- 3.4.4 Лица, обслуживающие устройства в комплекте с датчиком, должны пройти обучение и аттестацию по следующим документам: «Правила эксплуатации электроустановок потребителей»; «Правила техники безопасности при эксплуатации электроустановок потребителей» и «Правила устройства электроустановок». В устройствах, где используются датчики, должны быть предусмотрены приспособления безопасности, учитывающие возможность разрушения датчика.
- 3.4.5 Металлические конструкции, на которых монтируется датчик, и конструкции, опирающиеся на них, должны быть соединены между собой гибкой медной токоведущей перемычкой с сечением не менее 4мм² и заземлены так, чтобы при электросварочных и других работах, а также в процессе эксплуатации через датчик не проходил электрический ток.

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

4.1 Общие указания

Техническое обслуживание производится с целью обеспечения работоспособности датчиков при эксплуатации.

Техническое обслуживание проводится лицами имеющими допуск к работе с датчиками и устройствами, куда входят датчики.

Проверка технического состояния датчиков проводится после их получения, перед установкой на место эксплуатации, а также в процессе эксплуатации по мере необходимости, но не реже одного раза в неделю.

Проверка состоит из:

- осмотра внешнего состояния датчиков;
- проверка надежности крепления датчиков;
- проверка резьбовых соединений и их стопорение;
- очистки от пыли и грязи, посторонних веществ;
- проверка надежности контактных соединений и соединительного кабеля.

5 УСТРАНЕНИЕ НЕПОЛАДОК

5.1 Возможные неисправности датчика и методы их устранения указаны в таблице 1. Таблица 1

Характер неисправности	Вероятная причина	Метод устранения
1. Отсутствует сигнал на	1.1 Обрыв электрической цепи	1.1 Обрыв устранить
выходе датчика	1.2 Не исправен датчик	1.2 Заменить датчик
2. Нестабильность выходно-	2.1 Плохое качество встройки	2.1 Правильно установить
го сигнала	датчика	датчик

5.2 Устранение неисправностей, влекущих за собой вскрытие датчика, необходимо проводить у Изготовителя.

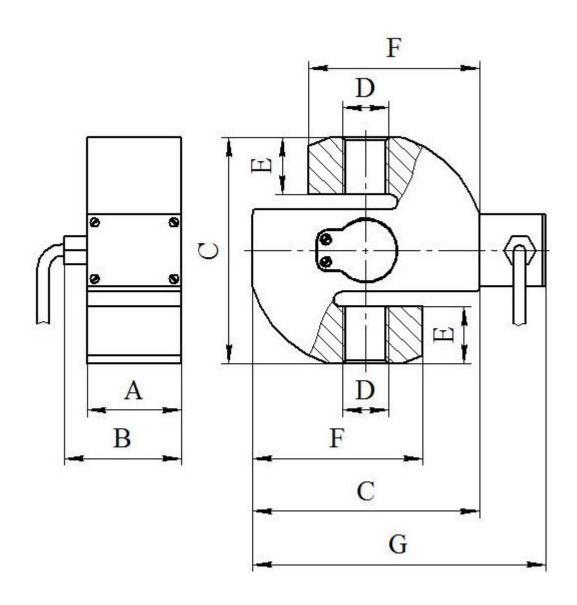
6 ПОВЕРКА

- 6.1 Поверка осуществляется по ГОСТ 8.631 «Датчики весоизмерительные. Общие технические требования. Методы испытаний».
 - 6.2 Средства поверки:
- средства измерений первого разряда по ГОСТ Р 8.640-2014 «ГСИ. Государственная поверочная схема для средств измерений силы» с пределами допускаемых доверительных границ относительной погрешности не превышающими 1/3 от пределов допускаемой погрешности поверяемых датчиков;
 - вольтметр или компаратор напряжений класса точности 0,005.

7 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 7.1 Условия хранения датчиков по группе 1 ГОСТ 15150.
- 7.2 Транспортирование датчиков в упаковке осуществляется всеми видами транспорта. Условия транспортирования по группе 7 ГОСТ 15150.
- 7.3 При погрузке, транспортировании и выгрузке датчиков необходимо соблюдать осторожность и выполнять требования манипуляционных знаков и надписей, нанесенных на транспортный ящик.

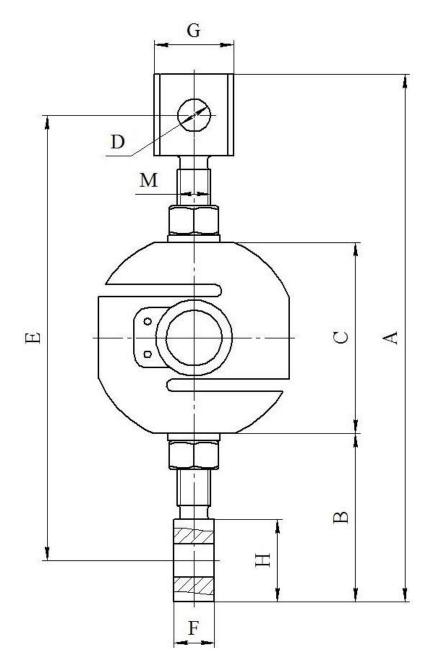
8 ГАРАНТИИ ИЗГОТОВИТЕЛЯ


- 8.1 Изготовитель гарантирует соответствие датчиков требованиям настоящего РЭ при соблюдении Потребителем условий транспортирования, хранения, монтажа и эксплуатации.
- 8.2 Гарантийный срок эксплуатации датчиков 18 месяцев со дня ввода в эксплуатацию, но не более 24 месяцев со дня продажи.
- 8.3 Потребитель лишается права на гарантийный ремонт при нарушении правил хранения, монтажа и эксплуатации.
- 8.4 При отсутствии Паспорта, которым сопровождается каждый датчик, ремонт датчиков не может быть квалифицирован как гарантийный. Процедура ремонта переходит в разряд послегарантийного ремонта.

9 УТИЛИЗАЦИЯ

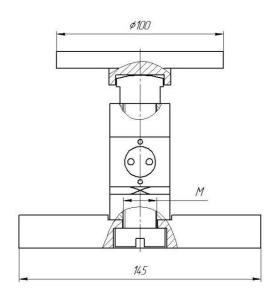
По окончании срока службы или вследствие нецелесообразности ремонта, датчики подлежат утилизации, которая производится в соответствии со стандартами предприятия, на котором эксплуатируются датчики.

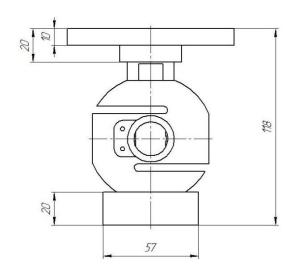
Приложение А

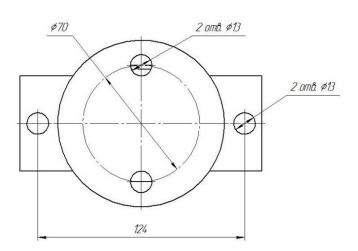

Общий вид, габаритные и установочные размеры датчиков

Максимальная нагрузка, т	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм	G, мм
0,1; 0,2	28	60	70	M12×1,5	15	70	110
0,5; 1,0; 2,0	36	60	70	M20×1,5	15	70	110
5,0	50	62	120	M24	30,5	90	155
10,0	74	80	140	M30×2	32	108	175

Приложение Б.1

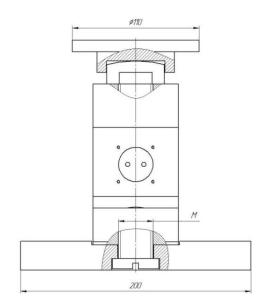

Рекомендованные узлы встройки датчиков на растяжение

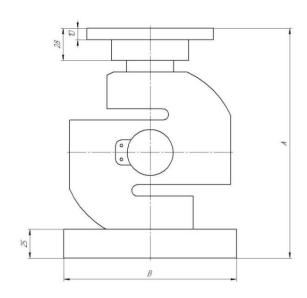


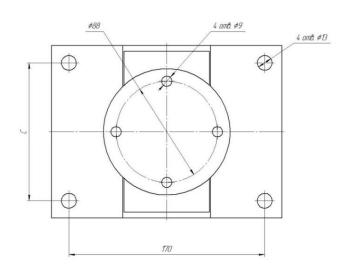

Обозначение при	Максимальная	A,	В,	C,	D,	E,	F,	G,	Н,	М, мм
заказе	нагрузка, т	MM	MM	MM	MM	MM	MM	MM	MM	IVI, MIM
УВД 4508/469	0,1; 0,2	193	30	70	12	163	15	29	30	$M12 \times 1,5$
УВД 4508/469-01	0,5; 1,0; 2,0	177	30	70	12	147	24	29	30	M20×1,5
УВД 4508/091	5,0	348	80	120	30	268	34	69	80	M24
УВД 4508/091-01	10,0	366	80	140	30	286	34	09	80	M30×2

Приложение Б.2.1

Рекомендованные узлы встройки датчиков на сжатие (максимальная нагрузка 0,1÷2,0т)

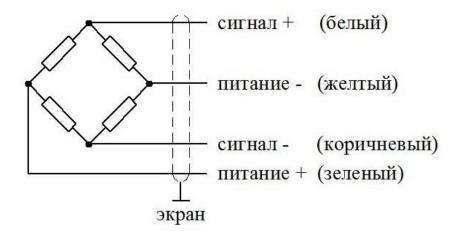


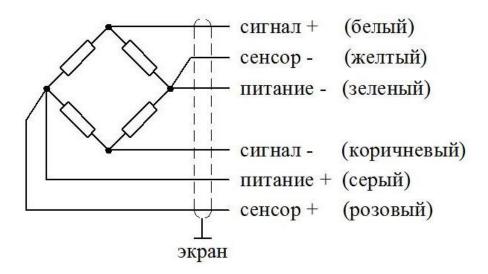



Обозначение при заказе	Максимальная нагрузка, т	М, мм
УВД 4508/470	0,1; 0,2	M12×1,5
УВД 4508/470-01	0,5; 1,0; 2,0	M20×1,5

Приложение Б.2.2

Рекомендованные узлы встройки датчиков на сжатие (максимальная нагрузка 5,0÷10,0т)




Обозначение при заказе	Максимальная нагрузка, т	А, мм	В, мм	С, мм	М, мм
УВД 4508/470-02	5,0	180	100	70	M24
УВД 4508/470-03	10,0	200	150	120	M30×2

Приложение В

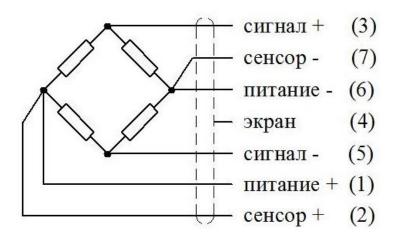

Схема подключения датчика с кабельным выводом (четырехпроводная)

Схема подключения датчика с кабельным выводом (шестипроводная)

Схема подключения датчика с разъемом

